Conformational stability as a design target to control protein aggregation.
نویسندگان
چکیده
Non-native protein aggregation is a prevalent problem occurring in many biotechnological manufacturing processes and can compromise the biological activity of the target molecule or induce an undesired immune response. Additionally, some non-native aggregation mechanisms lead to amyloid fibril formation, which can be associated with debilitating diseases. For natively folded proteins, partial or complete unfolding is often required to populate aggregation-prone conformational states, and therefore one proposed strategy to mitigate aggregation is to increase the free energy for unfolding (ΔGunf) prior to aggregation. A computational design approach was tested using human γD crystallin (γD-crys) as a model multi-domain protein. Two mutational strategies were tested for their ability to reduce/increase aggregation rates by increasing/decreasing ΔGunf: stabilizing the less stable domain and stabilizing the domain-domain interface. The computational protein design algorithm, RosettaDesign, was implemented to identify point variants. The results showed that although the predicted free energies were only weakly correlated with the experimental ΔGunf values, increased/decreased aggregation rates for γD-crys correlated reasonably well with decreases/increases in experimental ΔGunf, illustrating improved conformational stability as a possible design target to mitigate aggregation. However, the results also illustrate that conformational stability is not the sole design factor controlling aggregation rates of natively folded proteins.
منابع مشابه
Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملNonionic Surfactants (Dodecyl Maltoside and Polysorbate 20) Effect on Light induced Aggregation and Conformational Changes of Recombinant Human IFNβ_1b
Liquid protein formulations are prone to form aggregates. The effect of nonionic surfactants such as Polysorbate 20 (PS 20) and n-Dodecyl β-D-maltoside (DDM) on the prevention of aggregation and conformational changes of recombinant human IFNβ-1b (rhIFN β_1b) was explored. Polysorbate has been used in formulations of protein pharmaceuticals. There have been concerns about using PS 20 due to its...
متن کاملNonionic Surfactants (Dodecyl Maltoside and Polysorbate 20) Effect on Light induced Aggregation and Conformational Changes of Recombinant Human IFNβ_1b
Liquid protein formulations are prone to form aggregates. The effect of nonionic surfactants such as Polysorbate 20 (PS 20) and n-Dodecyl β-D-maltoside (DDM) on the prevention of aggregation and conformational changes of recombinant human IFNβ-1b (rhIFN β_1b) was explored. Polysorbate has been used in formulations of protein pharmaceuticals. There have been concerns about using PS 20 due to its...
متن کاملIn vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy
In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic method...
متن کاملClioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease
Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2014